Resolvin D1 and D2 Reverse Lipopolysaccharide-Induced Depression-Like Behaviors Through the mTORC1 Signaling Pathway
نویسندگان
چکیده
Background Resolvin D1 and D2 are bioactive lipid mediators that are generated from docosahexaenoic acid. Although recent preclinical studies suggest that these compounds have antidepressant effects, their mechanisms of action remain unclear. Methods We investigated mechanisms underlying the antidepressant effects of resolvin D1 and resolvin D2 in lipopolysaccharide (0.8 mg/kg, i.p.)-induced depression model mice using a tail suspension test. Results I.c.v. infusion of resolvin D1 (10 ng) and resolvin D2 (10 ng) produced antidepressant effects; these effects were significantly blocked by a resolvin D1 receptor antagonist WRW4 (10 µg, i.c.v.) and a resolvin D2 receptor antagonist O-1918 (10 µg, i.c.v.), respectively. The mammalian target of rapamycin complex 1 inhibitor rapamycin (10 mg/kg, i.p.) and a mitogen-activated protein kinase kinase inhibitor U0126 (5 µg, i.c.v.) significantly blocked the antidepressant effects of resolvin D1 and resolvin D2. An AMPA receptor antagonist NBQX (10 mg/kg, i.p.) and a phosphoinositide 3-kinase inhibitor LY294002 (3 µg, i.c.v.) blocked the antidepressant effects of resolvin D1 significantly, but not of resolvin D2. Bilateral infusions of resolvin D1 (0.3 ng/side) or resolvin D2 (0.3 ng/side) into the medial prefrontal cortex or dentate gyrus of the hippocampus produced antidepressant effects. Conclusions These findings demonstrate that resolvin D1 and resolvin D2 produce antidepressant effects via the mammalian target of rapamycin complex 1 signaling pathway, and that the medial prefrontal cortex and dentate gyrus are important brain regions for these antidepressant effects. These compounds and their receptors may be promising targets for the development of novel rapid-acting antidepressants, like ketamine and scopolamine.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملResolvin D1 Reverts Lipopolysaccharide-Induced TJ Proteins Disruption and the Increase of Cellular Permeability by Regulating IκBα Signaling in Human Vascular Endothelial Cells
Tight Junctions (TJ) are important components of paracellular pathways, and their destruction enhances vascular permeability. Resolvin D1 (RvD1) is a novel lipid mediator that has treatment effects on inflammatory diseases, but its effect on inflammation induced increase in vascular permeability is unclear. To understand whether RvD1 counteracts the lipopolysaccharide (LPS) induced increase in ...
متن کاملNovel Biphasic Role of Resolvin D1 on Expression of Cyclooxygenase-2 in Lipopolysaccharide-Stimulated Lung Fibroblasts Is Partly through PI3K/AKT and ERK2 Pathways
Fibroblasts, far from being merely bystander cells, are known to play a specific role in inflammation resolution after an acute injury. As the endogenous "braking signal," resolvins possess potent anti-inflammatory and pro-resolution actions. We demonstrated that the expression of COX-2 protein was significantly peaked initially at 6 hours but then also at 48 hours after LPS stimulation in lung...
متن کاملTHE EFFECT OF 4 WEEKS’ AEROBIC TRAINING ON THE CONTENT OF MTORC1 SIGNALING PATHWAY PROTEINS IN HEART TISSUE OF TYPE 1 DIABETES RATS
Background: The mTORC1 pathway is one of the important pathways for protein synthesis in the heart, which can lead to physiological or pathological hypertrophy. Diabetes can lead to defects in this pathway. The aim of this study was to examine the effect of 4 weeks’ aerobic training on the content of mTORC1 signaling pathway proteins in heart tissue of type 1 diabetes rats. Methods: In this ...
متن کاملThe Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes
Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2017